cyclo‐P4 Building Blocks: Achieving Non‐Classical Fullerene Topology and Beyond

نویسندگان

  • Fabian Dielmann
  • Eugenia V Peresypkina
  • Barbara Krämer
  • Florian Hastreiter
  • Brian P Johnson
  • Manfred Zabel
  • Claudia Heindl
  • Manfred Scheer
چکیده

The cyclo-P4 complexes [CpR Ta(CO)2 (η4 -P4 )] (CpR : Cp''=1,3-C5 H3 tBu2 , Cp'''=1,2,4-C5 H2 tBu3 ) turned out to be predestined for the formation of hollow spherical supramolecules with non-classical fullerene-like topology. The resulting assemblies constructed with CuX (X=Cl, Br) showed a highly symmetric 32-vertex core of solely four- and six-membered rings. In some supramolecules, the inner cavity was occupied by an additional CuX unit. On the other hand, using CuI, two different supramolecules with either peanut- or pear-like shapes and outer diameters in the range of 2-2.5 nm were isolated. Furthermore, the spherical supramolecules containing Cp''' ligands at tantalum are soluble in CH2 Cl2 . NMR spectroscopic investigations in solution revealed the formation of isomeric supramolecules owing to the steric hindrance caused by the third tBu group on the Cp''' ligand. In addition, a 2D coordination polymer was obtained and structurally characterized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of polylactic acid support in stability and electrical field of heterocyclic coupled hexa peptide nano systems: A novel strateu to drug delivery

Biological materials. recently. are the building blocks of several self-assembling peptide and protein systems.The main challenge In molecular self-assembly is to design molecular building blocks that can undergospontaneous organization. These cyche peptides were produced by an alternating fl'ell number of D- and Laminoacids.which interact through non-covalent interactions co an array of selfas...

متن کامل

A Nano-sized Supramolecule Beyond the Fullerene Topology**

The reaction of [Cp(Bn) Fe(η(5) -P5 )] (1) (Cp(Bn) =η(5) -C5 (CH2 Ph)5 ) with CuI selectively yields a novel spherical supramolecule (CH2 Cl2 )3.4 @[(Cp(Bn) FeP5 )12 {CuI}54 (MeCN)1.46 ] (2) showing a linkage of the scaffold atoms which is beyond the Fullerene topology. Its extended CuI framework reveals an outer diameter of 3.7 nm-a size that has not been reached before using five-fold symmetr...

متن کامل

A non-fullerene electron acceptor based on fluorene and diketopyrrolopyrrole building blocks for solution-processable organic solar cells with an impressive open-circuit voltage.

A novel solution-processable non-fullerene electron acceptor 6,6'-(5,5'-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (DPP1) based on fluorene and diketopyrrolopyrrole conjugated moieties was designed, synthesized and fully characterized. DPP1 exhibited excellent solubility and high thermal stability ...

متن کامل

A Highly-Ordered 3D Covalent Fullerene Framework**

A highly-ordered 3D covalent fullerene framework is presented with a structure based on octahedrally functionalized fullerene building blocks in which every fullerene is separated from the next by six functional groups and whose mesoporosity is controlled by cooperative self-assembly with a liquid-crystalline block copolymer. The new fullerene-framework material was obtained in the form of supp...

متن کامل

Synthetic strategies to bicyclic tetraphosphanes using P1, P2 and P4 building blocks.

Different reactions of Mes* substituted phosphanes (Mes* = 2,4,6-tri-tert-butylphenyl) led to the formation of the bicyclic tetraphosphane Mes*P4Mes* (5) and its unknown Lewis acid adduct 5·GaCl3. In this context, the endo-exo isomer of 5 was fully characterized for the first time. The synthesis was achieved by reactions involving "self-assembly" of the P4 scaffold from P1 building blocks (i.e....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2016